floodresilience.dynamic_boundary_conditions.tide.tide_slr_combine
Generates combined tide and sea level rise (SLR) data for a specific projection year, taking into account the provided confidence level, SSP scenario, inclusion of Vertical Land Motion (VLM), percentile, and more.
Attributes
Functions
| 
 | Get sea level rise scenario data based on the specified confidence_level, ssp_scenario, add_vlm, and percentile. | 
| Interpolates sea level rise scenario data based on the specified year interval and interpolation method. | |
| 
 | Add sea level rise (SLR) data to the tide data for a specific projection year and | 
| 
 | Generate the combined tide and sea level rise (SLR) data for a specific projection year, considering the given | 
Module Contents
- floodresilience.dynamic_boundary_conditions.tide.tide_slr_combine.log
- floodresilience.dynamic_boundary_conditions.tide.tide_slr_combine.get_slr_scenario_data(slr_data: geopandas.GeoDataFrame, confidence_level: str, ssp_scenario: str, add_vlm: bool, percentile: int) geopandas.GeoDataFrame
- Get sea level rise scenario data based on the specified confidence_level, ssp_scenario, add_vlm, and percentile. - Parameters:
- slr_data (gpd.GeoDataFrame) – A GeoDataFrame containing the sea level rise data. 
- confidence_level (str) – The desired confidence level for the scenario data. Valid values are ‘low’ or ‘medium’. 
- ssp_scenario (str) – The desired Shared Socioeconomic Pathways (SSP) scenario for the scenario data. Valid options for both low and medium confidence are: ‘SSP1-2.6’, ‘SSP2-4.5’, or ‘SSP5-8.5’. Additional options for medium confidence are: ‘SSP1-1.9’ or ‘SSP3-7.0’. 
- add_vlm (bool) – Indicates whether to include Vertical Land Motion (VLM) in the scenario data. Set to True if VLM should be included, False otherwise. 
- percentile (int) – The desired percentile for the scenario data. Valid values are 17, 50, or 83. 
 
- Returns:
- A GeoDataFrame containing the sea level rise scenario data based on the specified confidence_level, ssp_scenario, add_vlm, and percentile. 
- Return type:
- gpd.GeoDataFrame 
- Raises:
- ValueError – - If an invalid ‘confidence_level’ value is provided. 
- If an invalid ‘ssp_scenario’ value is provided. 
- If an invalid ‘add_vlm’ value is provided. 
- If an invalid ‘percentile’ value is provided. 
 
 
- floodresilience.dynamic_boundary_conditions.tide.tide_slr_combine.get_interpolated_slr_scenario_data(slr_scenario_data: geopandas.GeoDataFrame, increment_year: int = 1, interp_method: str = 'linear') geopandas.GeoDataFrame
- Interpolates sea level rise scenario data based on the specified year interval and interpolation method. - Parameters:
- slr_scenario_data (gpd.GeoDataFrame) – A GeoDataFrame containing the sea level rise scenario data. 
- increment_year (int = 1) – The year interval used for interpolation. Defaults to 1 year. 
- interp_method (str = "linear") – Temporal interpolation method to be used. Defaults to ‘linear’. Available methods: ‘linear’, ‘nearest’, ‘nearest-up’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, ‘next’. Refer to ‘scipy.interpolate.interp1d()’ for more details. 
 
- Returns:
- A GeoDataFrame containing the interpolated sea level rise scenario data. 
- Return type:
- gpd.GeoDataFrame 
- Raises:
- ValueError – - If the specified ‘increment_year’ is out of range. 
- If the specified ‘interp_method’ is not supported. 
 
 
- floodresilience.dynamic_boundary_conditions.tide.tide_slr_combine.add_slr_to_tide(tide_data: geopandas.GeoDataFrame, slr_interp_scenario: geopandas.GeoDataFrame, proj_year: int) pandas.DataFrame
- Add sea level rise (SLR) data to the tide data for a specific projection year and return the combined tide and sea level rise value. - Parameters:
- tide_data (gpd.GeoDataFrame) – A GeoDataFrame containing tide data with added time information (seconds, minutes, hours) and location details. 
- slr_interp_scenario (gpd.GeoDataFrame) – A GeoDataFrame containing the interpolated sea level rise scenario data. 
- proj_year (int) – The projection year for which sea level rise data should be added to the tide data. 
 
- Returns:
- A DataFrame that contains the combined tide and sea level rise data for the specified projection year. 
- Return type:
- pd.DataFrame 
- Raises:
- ValueError – If an invalid ‘proj_year’ value is provided. 
 
- floodresilience.dynamic_boundary_conditions.tide.tide_slr_combine.get_combined_tide_slr_data(tide_data: geopandas.GeoDataFrame, slr_data: geopandas.GeoDataFrame, proj_year: int, confidence_level: str, ssp_scenario: str, add_vlm: bool, percentile: int, increment_year: int = 1, interp_method: str = 'linear') pandas.DataFrame
- Generate the combined tide and sea level rise (SLR) data for a specific projection year, considering the given confidence_level, ssp_scenario, add_vlm, percentile, and more. - Parameters:
- tide_data (gpd.GeoDataFrame) – A GeoDataFrame containing tide data with added time information (seconds, minutes, hours) and location details. 
- slr_data (gpd.GeoDataFrame) – A GeoDataFrame containing the sea level rise data. 
- proj_year (int) – The projection year for which the combined tide and sea level rise data should be generated. 
- confidence_level (str) – The desired confidence level for the sea level rise data. 
- ssp_scenario (str) – The desired Shared Socioeconomic Pathways (SSP) scenario for the sea level rise data. 
- add_vlm (bool) – Indicates whether Vertical Land Motion (VLM) should be included in the sea level rise data. 
- percentile (int) – The desired percentile for the sea level rise data. 
- increment_year (int = 1) – The year interval used for interpolating the sea level rise data. Defaults to 1 year. 
- interp_method (str = "linear") – Temporal interpolation method used for interpolating the sea level rise data. Defaults to ‘linear’. Available methods: ‘linear’, ‘nearest’, ‘nearest-up’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, ‘next’. Refer to ‘scipy.interpolate.interp1d()’ for more details. 
 
- Returns:
- A DataFrame containing the combined tide and sea level rise data for the specified projection year, taking into account the provided confidence_level, ssp_scenario, add_vlm, percentile, and more. 
- Return type:
- pd.DataFrame