floodresilience.tasks

Runs backend tasks using Celery. Allowing for multiple long-running tasks to complete in the background. Allows the frontend to send tasks and retrieve status later.

Attributes

log

Classes

DepthTimePlot

Represents the depths over time for a particular pixel location in a raster.

Functions

on_startup(→ None)

Initialise database, runs when Celery instance is ready.

create_model_for_area(→ celery.result.GroupResult)

Create a model for the area using series of chained (sequential) sub-tasks.

process_dem(→ None)

Task to ensure hydrologically-conditioned DEM is processed for the given area and added to the database.

generate_rainfall_inputs(→ None)

Task to ensure rainfall input data for the given area is added to the database and model input files are created.

generate_tide_inputs(→ None)

Task to ensure tide input data for the given area is added to the database and model input files are created.

generate_river_inputs(→ None)

Task to ensure river input data for the given area is added to the database and model input files are created.

run_flood_model(→ int)

Task to run flood model using input data from previous tasks.

refresh_lidar_datasets(→ None)

Web-scrapes OpenTopography metadata to create the datasets table containing links to LiDAR data sources.

ensure_lidar_datasets_initialised(→ None)

Check if LiDAR datasets table is initialised.

get_model_output_filepath_from_model_id(→ str)

Task to query the database and find the filepath for the model output for the model_id.

get_depth_by_time_at_point(→ DepthTimePlot)

Task to query a point in a flood model output and return the list of depths and times.

get_model_extents_bbox(→ str)

Task to find the bounding box of a given model output.

get_valid_parameters_based_on_confidence_level(...)

Task to get information on valid tide and sea-level-rise parameters based on the valid values in the database.

validate_slr_parameters(...)

Task to validate each of the sea-level-rise parameters.

Module Contents

floodresilience.tasks.log
class floodresilience.tasks.DepthTimePlot

Bases: NamedTuple

Represents the depths over time for a particular pixel location in a raster. Uses tuples and lists instead of Arrays or Dataframes because it needs to be easily serializable when communicating over message_broker.

depths

A list of all of the depths in m for the pixel. Parallels the times list

Type:

List[float]

times

A list of all of the times in s for the pixel. Parallels the depts list

Type:

List[float]

depths: List[float]
times: List[float]
floodresilience.tasks.on_startup(sender: celery.worker.consumer.Consumer, **_kwargs: None) None

Initialise database, runs when Celery instance is ready.

Parameters:

sender (Consumer) – The Celery worker node instance

floodresilience.tasks.create_model_for_area(selected_polygon_wkt: str, scenario_options: dict) celery.result.GroupResult

Create a model for the area using series of chained (sequential) sub-tasks.

Parameters:
  • selected_polygon_wkt (str) – The polygon defining the selected area to run the model for. Defined in WKT form.

  • scenario_options (dict) – Options for scenario modelling inputs.

Returns:

The task result for the long-running group of tasks. The task ID represents the final task in the group.

Return type:

result.GroupResult

floodresilience.tasks.process_dem(selected_polygon_wkt: str) None

Task to ensure hydrologically-conditioned DEM is processed for the given area and added to the database.

Parameters:

selected_polygon_wkt (str) – The polygon defining the selected area to process the DEM for. Defined in WKT form.

floodresilience.tasks.generate_rainfall_inputs(selected_polygon_wkt: str) None

Task to ensure rainfall input data for the given area is added to the database and model input files are created.

Parameters:

selected_polygon_wkt (str) – The polygon defining the selected area to add rainfall data for. Defined in WKT form.

floodresilience.tasks.generate_tide_inputs(selected_polygon_wkt: str, scenario_options: dict) None

Task to ensure tide input data for the given area is added to the database and model input files are created.

Parameters:
  • selected_polygon_wkt (str) – The polygon defining the selected area to add tide data for. Defined in WKT form.

  • scenario_options (dict) – Options for scenario modelling inputs.

floodresilience.tasks.generate_river_inputs(selected_polygon_wkt: str) None

Task to ensure river input data for the given area is added to the database and model input files are created.

Parameters:

selected_polygon_wkt (str) – The polygon defining the selected area to add river data for. Defined in WKT form.

floodresilience.tasks.run_flood_model(selected_polygon_wkt: str) int

Task to run flood model using input data from previous tasks.

Parameters:

selected_polygon_wkt (str) – The polygon defining the selected area to run the flood model for. Defined in WKT form.

Returns:

The database ID of the flood model that has been run.

Return type:

int

floodresilience.tasks.refresh_lidar_datasets() None

Web-scrapes OpenTopography metadata to create the datasets table containing links to LiDAR data sources. Takes a long time to run but needs to be run periodically so that the datasets are up to date.

floodresilience.tasks.ensure_lidar_datasets_initialised() None

Check if LiDAR datasets table is initialised. This table holds URLs to data sources for LiDAR. If it is not initialised, then it initialises it by web-scraping OpenTopography which takes a long time.

floodresilience.tasks.get_model_output_filepath_from_model_id(model_id: int) str

Task to query the database and find the filepath for the model output for the model_id.

Parameters:

model_id (int) – The database id of the model output to query.

Returns:

Serialized posix-style str version of the filepath.

Return type:

str

floodresilience.tasks.get_depth_by_time_at_point(model_id: int, lat: float, lng: float) DepthTimePlot

Task to query a point in a flood model output and return the list of depths and times.

Parameters:
  • model_id (int) – The database id of the model output to query.

  • lat (float) – The latitude of the point to query.

  • lng (float) – The longitude of the point to query.

Returns:

Tuple of depths list and times list for the pixel in the output nearest to the point.

Return type:

DepthTimePlot

floodresilience.tasks.get_model_extents_bbox(model_id: int) str

Task to find the bounding box of a given model output.

Parameters:

model_id (int) – The database id of the model output to query.

Returns:

The bounding box in ‘x1,y1,x2,y2’ format.

Return type:

str

floodresilience.tasks.get_valid_parameters_based_on_confidence_level() Dict[str, Dict[str, str | int]]

Task to get information on valid tide and sea-level-rise parameters based on the valid values in the database. These parameters are mostly dependent on the “confidence_level” parameter, so that is the key in the returned dict.

Returns:

Dictionary with confidence_level as the key, and 2nd level dict with allowed values for dependent values.

Return type:

Dict[str, Dict[str, Union[str, int]]]

floodresilience.tasks.validate_slr_parameters(scenario_options: Dict[str, str | float | int | bool]) floodresilience.dynamic_boundary_conditions.tide.main_tide_slr.ValidationResult

Task to validate each of the sea-level-rise parameters.

Parameters:

scenario_options (Dict[str, Union[str, float, int, bool]]) – Options for scenario modelling inputs, coming from JSON body.

Returns:

Result of the validation, with validation failure reason if applicable

Return type:

main_tide_slr.ValidationResult